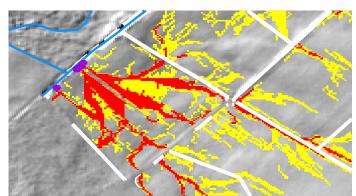
Circular Economy Transition in UNECE Region / WUNECE

Sustainable Meat & Livestock - A Practitioner's View

Prof. John Gilliland OBE

Professor of Practice, Queens University Belfast; Advisor, AHDB; Chair, ARC Zero Owner, Brook Hall Estate.

29th August 2023



Circularity within the Farm Business Delivering Multiple Public Goods - Not Single Agendas

Producing Nutritiously Dense & Diverse Food

Improving Water Quality by Reducing Over Land Flow of excessive Rainfall

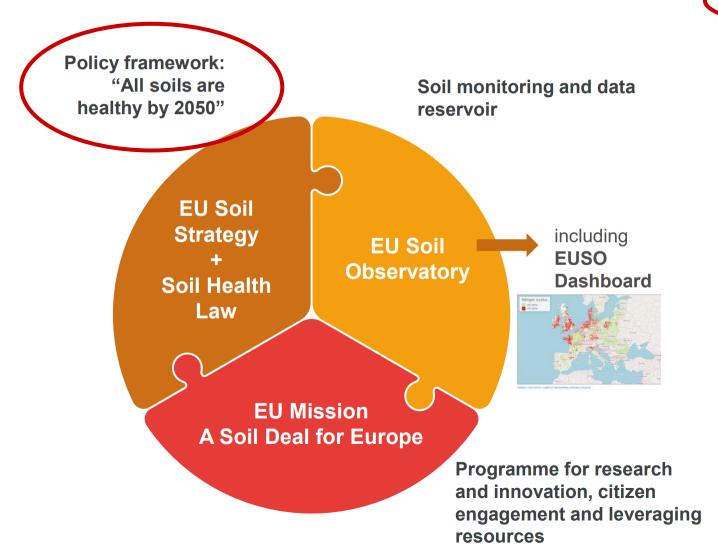
Delivering Soil Improvement, Both Fertility & Health

Optimising Biodiversity, Especially Below Ground

Accelerating Carbon Sequestration, Both Above & Below Ground

Delivering a "Just Transition,"

Generating Profits



EUROPEAN UNION Prioritising Soil Health

Policy context for soil protection in the EU

Mission firmly embedded in 12 Green Deal strategies

- Farm to Fork Strategy
- EU Biodiversity Strategy for 2030
- Climate Adaptation Strategy
- Forest Strategy
- Zero Pollution Action Plan for air, water and soil
- Organic Action Plan
- Long term vision for EU's rural areas
- EU Soil Strategy for 2030 and upcoming Soil health Law
- Communication on sustainable carbon cycles
- Communication "Safeguarding food security and reinforcing the resilience of food systems"
- Communication "Ensuring availability and affordability of fertilisers"
- Communication on the European Citizens' Initiative (ECI) "Save bees and farmers! Towards a bee-friendly agriculture for a healthy environment"
- Strategies identify contribution of Mission to meeting targets and objectives

Mission goal – 100 living labs and lighthouses to lead the transition towards healthy soils by 2030

Specific objectives

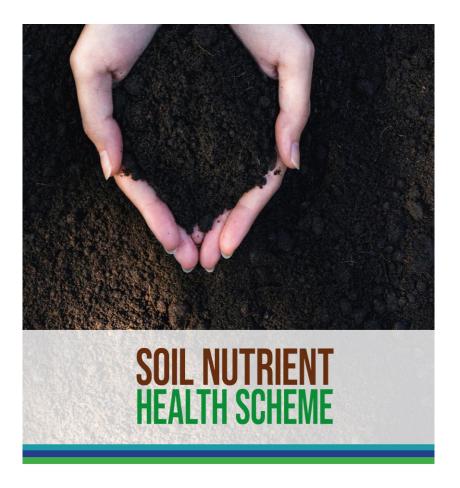
5. Prevent erosion

2. Conserve soil organic carbon stocks

- 6. Improve soil structure to enhance soil biodiversity
- 3. Stop soil sealing and increase re-use of urban soils
- 7. Reduce the EU global footprint on soils

- 4. Reduce soil pollution and enhance restoration
- 8. Improve soil literacy in society

Building blocks


Soil literacy, communication citizen engagement

Research & Innovation programme

Soil monitoring Living labs and lighthouses

Objectives apply to all types of land use and all territories and are relevant for a range of sectors.

Is Circular Ambition Possible at a Regional Level.....

- £45m N. Ireland Scheme to base line every field, tree & hedge
- Carried out over four years, one Zone per year
- Online training, empowering farmers with their own Data
- Output Soil Fertility, Carbon Stocks & Run off Risk Maps
- Opened May 2022, plan to repeat every five years
- 92% Farmer uptake in Zone One (25% of N. Ireland)
- Soil Nutrient Health Scheme | Agri-Food and Biosciences Institute (afbini.gov.uk)

Essential..... Government Recognition.....
Measuring, Reporting & Verification is a Public Good

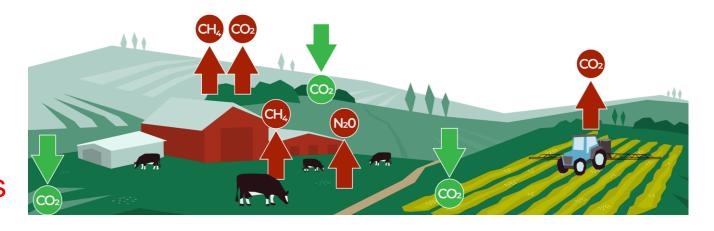
Delivering at the Farm Level

Accelerating Seven N. Irish Farms towards Net Zero

Roger & Hilary Bell Sheep
Simon Best Arable & Beef
Patrick Casement Sheep & Sucklers
John Egerton Suckler Beef
John Gilliland Willow & Dry Stock
Hugh Harbison Dairy
lan McClelland Dairy

Where did we start..... Learning our Numbers.....

Baselined & Benchmarked.....


- GHG Emissions
- Carbon Sequestration
- Carbon Stocks in Soil
- Carbon Stocks in Trees
- Net Carbon Position
- Behavioural Change
- Delivering other Public Goods

Definition of "Net Zero" for a farm business

Gross Annual GHG Emissions

Less Gross Annual Carbon Sequestration,

Adjusted for Renewables & Waste Management

Gross Emissions for the seven ARC Zero farms

Using agreealc TIER 2 Emissions Module

2021 AgReCalc Analysis	Enterprises	Gross Emissions
Ian McClelland	Dairy	1,125t/yr
Hugh Harbison	Dairy	2,012t/yr
John Egerton	Beef & Sheep	1,404t/yr
Roger & Hilary Bell	Sheep with Beef	820t/yr
Simon Best	Arable with Beef	1,799t/yr
Patrick Casement & Trevor Butler	Beef & Sheep	492t/yr
John Gilliland	Willows with Dry Cow	151t/yr

Gross Sequestration for the seven ARC Zero farms Using agreealc TIER 1 Sequestration Module

2021 AgReCalc Analysis	Enterprises	Gross Sequestration
Ian McClelland	Dairy	309t/yr
Hugh Harbison	Dairy	550t/yr
John Egerton	Beef & Sheep	442t/yr
Roger & Hilary Bell	Sheep with Beef	455t/yr
Simon Best	Arable with Beef	738t/yr
Patrick Casement & Trevor Butler	Beef & Sheep	549t/yr
John Gilliland	Willows with Dry Cov	vs 156t/yr

Net Carbon as a Percentage of Gross Emissions Using agreealc TIER 1 Sequestration Module

2021 AgReCalc Analysis	Enterprises	Gross Emissions	Gross Sequestration	Net Emissions	% Reduction
Ian McClelland	Dairy	1,125t/yr	309t/yr	816t/yr	27%
Hugh Harbison	Dairy	2,012t/yr	550t/yr	1,462t/yr	27%
John Egerton	Beef & Sheep	1,404t/yr	442t/yr	962t/yr	31%
Roger & Hilary Bell	Sheep with Beef	820t/yr	455t/yr	365t/yr	56%
Simon Best	Arable with Beef	1,799t/yr	738t/yr	1,061t/y	59%
Patrick Casement & Trevor Butler	Beef & Sheep	492t/yr	549t/yr	-56t/yr	112%
John Gilliland	Willows with Dry Cows	151t/yr	156t/yr	-5t/yr	103%

No two farms are the same.....

Some farms will find the journey easier than others.....

Some farms are already past Net Zero.....

Carbon Sequestration – New Measuring Technologies When repeated every 5 yrs. measures actual change, essential for TIER 3

Aerial LiDAR Survey at 40 scans per metre

Soil Sampling to one metre deep

Total Carbon Stocks across ARC Zero farms.....

Total ARC Zero CO2e Stocks	Soil Carbon	Tree Carbon	Total Carbon	% C in Soil
Ian McClelland	31,813t	1,310t	33,123t	96%
Hugh Harbison	68,054t	1,969t	70,023t	97%
John Egerton	31,813t	1,310t	33,123t	96%
Roger & Hilary Bell	50,819t	688t	51,507t	98%
Simon Best	237,915t	6,493t	244,407t	97%
Patrick Casement & Trevor Butler	54,556t	4,022t	58,578t	93%
John Gilliland	19,468t	4,937t	24,405t	80%
		Total	515,166t	

ARC Zero farms manage 515,166t of CO2e, 97% is within the Soil In 2027, Perhaps 540,000t? Who will reward the additional carbon stored?

The Circular Approach explored by ARC Zero For both Mitigation & Building Carbon Stocks...

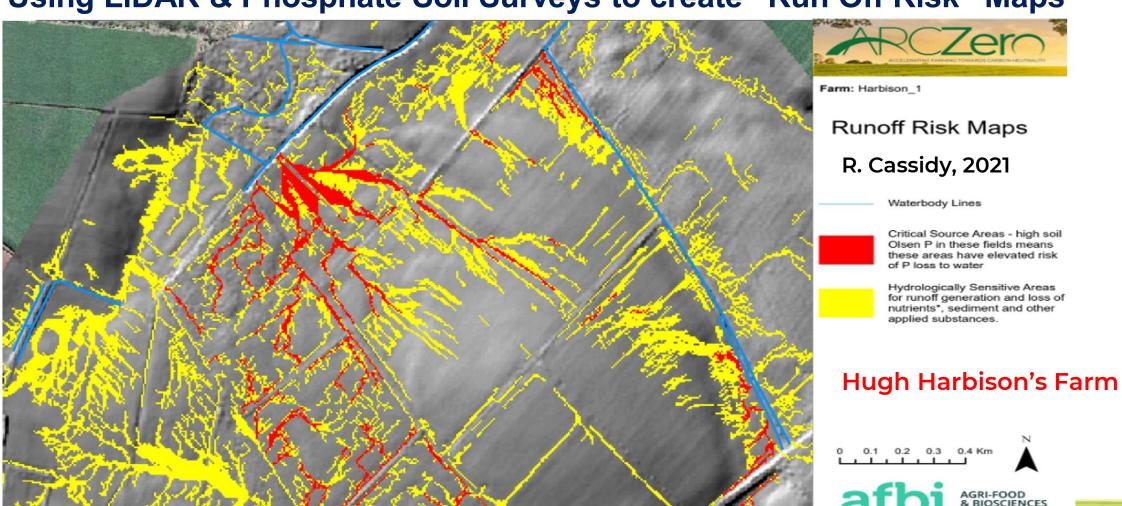
- Improving efficiency genetics, age of slaughter, cow size, animal health
- Improving Soil pH improving nutrient uptake & growth of clover
- Increasing the use of Legumes & Multi Species Pastures
- Reducing the use of Nitrogen fertiliser
- Planting trees & Hedgerow Management
- Grazing Willows
- Installing Renewables......

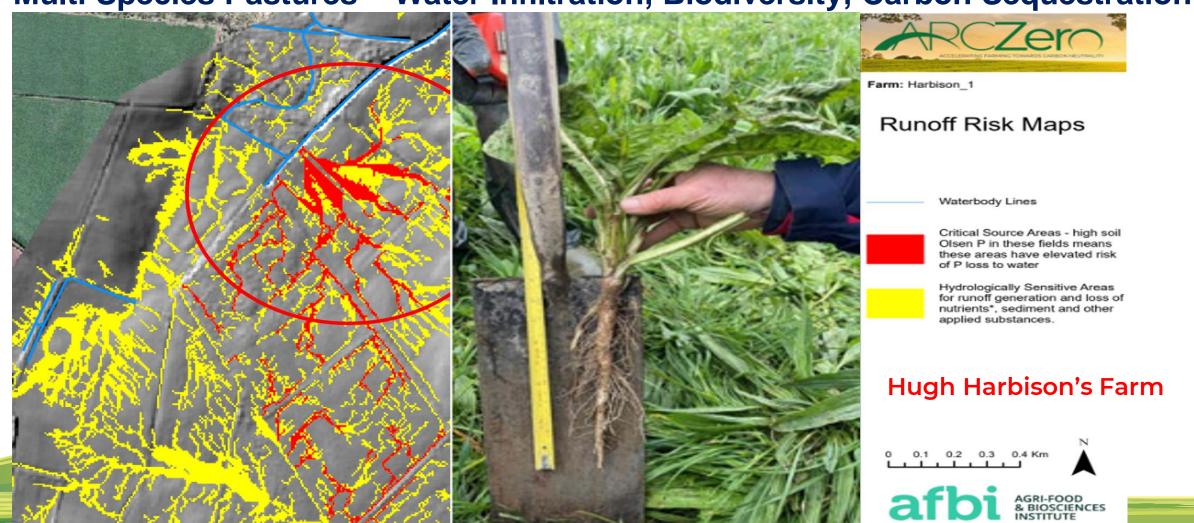
The Improvements Observed.....

Comparison between 2021 & 2023, gross emission/unit of output

GHG Reduction 2021 to 2023	Enterprises	2021	2023	% Reduction in GHGs
Ian McClelland	Dairy	1.3kg CO2e/kg FPC Milk	1.1kg CO2e/kg FPC Milk	13%
Hugh Harbison	Dairy	1.25kg CO2e/kg FPC Milk	1.2kg CO2e/kg FPC Milk	4%
John Egerton	Beef & Sheep	32.8kg CO2e/kg dwt	25.6kg CO2e/kg dwt	22%
Roger & Hilary Bell	Lamb	22kg CO2e/kg dwt	15.7kg CO2e/kg dwt	28%
Simon Best	Wheat	0.99kg CO2e/kg grain	0.47kg CO2e/kg grain	53%

Determining Factors – Price of Fertiliser


- Timing of sowing legumes
- Livestock ill health


Delivering Multiple Public Goods Simultaneously Using LiDAR & Phosphate Soil Surveys to create "Run Off Risk" Maps

Delivering Multiple Public Goods Simultaneously

Multi Species Pastures – Water Infiltration, Biodiversity, Carbon Sequestration

ARCZero

Willow SRC (28 Yrs. Old)

D. Woodland (30 Yrs. Old)

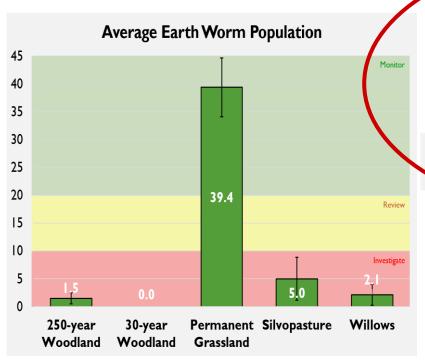
COMPARING DIFFERENT LAND USES

Permanent Pastureland (200 Yrs. Old)

BROOKHALL

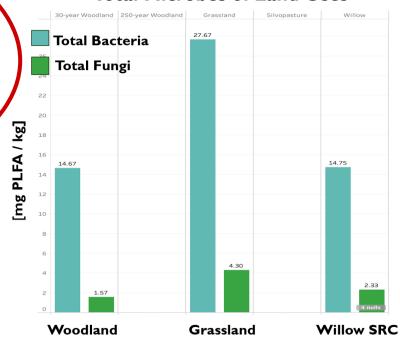
Estate & Gardens

R. Buffara, WUR, 2023


Silvopasture (120 Yrs. Old)

D. Woodland (250 Yrs. Old)

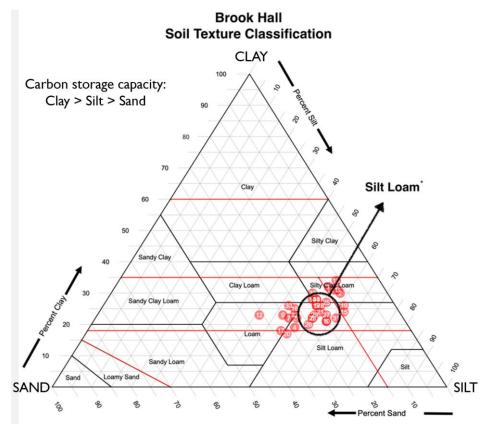
Delivering Multiple Public Goods Simultaneously Increasing Biodiversity Under the Soil.... Role of Livestock Faeces....

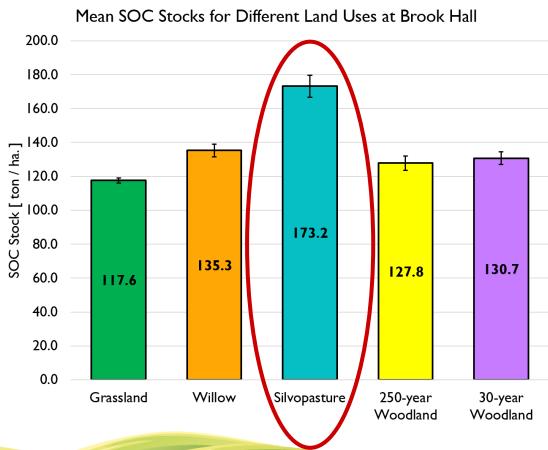

The age of extinction

More than half of Earth's species live in the soil, study finds

Soil estimated to be home to 90% of world's fungi, 85% of plants and more than 50% of bacteria, making it the world's most species-rich habitat

National Academy of Science, Aug 23


Total Microbes of Land Uses



Role of different Land Uses in building Soil Organic Carbon Diversity of root architecture is best.... Monocultures are not the right answer....

BROOKHALL Estate & Gardens

Innovation in Circularity, e.g. Grazing SRC Willow Trees

To reduce GHGs & deliver multiple public goods

Reducing Methane & Nitrous Oxide Increasing Carbon Sequestration & Biodiversity Reducing the need to treat animals for Parasitic Worms

EFFECT OF GRAZING CATTLE ON WILLOW SILVOPASTORAL SYSTEMS ON ANIMAL PERFORMANCE AND METHANE PRODUCTION

J. Thompson^{1*}, S. Stergiadis², O.C. Carballo³, T. Yan³, F. Lively³, J. Gilliland^{1,4}, S. Huws¹, K. Theodoridou¹

¹Institute of Global Food Security, Queen's University Belfast, Belfast, UK, ²School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, UK, ³Agri-Food and Biosciences Institute, Hillsborough, UK, ⁴Brook Hall Estate, Londonderry, Northern Ireland, UK.

Corresponding author: k.theodoridou@qub.ac.uk

BACKGROUND

- Ruminant systems are under pressure to reduce CH₄ emissions and increase carbon sequestration.
- Condensed Tannins (CTs) can bind to proteins, reducing ruminal degradation and methanogenesis
- Willow fodder contain CTs

1 WASHINGTON IN THE TOTAL TO PROVIDE A TOTAL TO A PROVIDED TO SECURITY AND ADMINISTRATION OF THE TOTAL TO A PROVIDED TO SECURITY AND ADMINISTRATION OF THE TOTAL TO A PROVIDED TO SECURITY AND ADMINISTRATION OF THE TOTAL TO A PROVIDED TO SECURITY AND ADMINISTRATION OF THE TOTAL TO A PROVIDED TO SECURITY AND ADMINISTRATION OF THE TOTAL TO A PROVIDED TO SECURITY AND ADMINISTRATION OF THE TOTAL TO ADMINIS

OBJECTIVES

- 1. Can beef cattle graze Willow Fodder (WF)
- 2. Quantify the effect of WF on performance and CH₄
- 3. To explore if WF can be rotationally grazed

METHODOLOGY

Agriculture, Environment and Rural Affairs Sustainability at the heart of a living, working.

Food Group

		Forage			
	PRG	WFG	s.e.m	P-value	
DM (g/kg fresh)	235	266	4.02	***	
CP (g/kg DM)	167	159	10.2	0.589	
ME (MJ/kg DM)	10.6	9.1	0.13	***	
CT (g/kg DM)		37.2	1.24	-	
Total DMI (kgDM)	10.2	11	0.217	0.0591	
LWG (kg/d)	1.04	0.716	0.0605	**	
CH4 (g/d)	237	173	7.18	***	

CONCLUSION AND IMPLICATIONS

- 1. Willow Silvopastoral systems could be a grazeable forage for cattle with potential to reduce CH_4 emissions
- 2. Further *in vivo* trials are needed to quantify the effect on protein metabolism and quality of animal products

Circular Economy Transition in UNECE Region 75 WUNECE

Sustainable Meat & Livestock - A Practitioner's View

Using a Partnership of Innovation, Precision Baselines & Training to Empower farmers, a creditable Circular Economy; a "Just Transition" for the Farming Community; & nutritiously Dense & Diverse foods, for a Healthy Society, can be delivered.

john.gilliland@brookhall.org

